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Noise : Nuisance and Tool

Outline:
Broad categories
fundamental equilibrium noise
noise reflecting system physics
bad contacts, etc.
Case studies in applications:
Noise and extraneous dirt: defects in SiO, etc.
Noise and dirty thermodynamics: e.g. manganites
Noise out of equilibrium: ferroelectric Barkhausen



Where does noise come from?

* White noise (often not a mystery):
— Look at a resistor in an amplifier circuit
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The voltage (or air pressure, etc) changes quickly from one

random value to a new, independent random value. Why?




Noise and the laws of
thermodynamics

ANY two resistors with the same resistance at the same temperature
MUST have the same sort of noise before a current is applied to
them, even if one is made of gold and one of salt water! \Why?

Let's say one was noisy and the other quiet. Then when hooked
together, the noisy one M
would drive more currents

VV\W
through the quiet one than vice versa. Currents heat up resistors. So
the quiet one would heat up and the noisy one would cool down. But
a basic law of thermodynamics says that two objects at the same

temperature don’t spontaneously go to different temperatures.
Therefore they must have the same amount of noise.

But no law like that applies when current is forced through them.
(Refrigerators work.)



Equilibrium basics

The magnitude of the noise Is given
by equipartition.
<(8V)%> = KT/C

The time course Is just exponential
decay, with RC time constant.

So the autocorrelation function iIs
<(8V(t) dV(t+ 1))>= (KT/C)e VRC

The spectrum S(f) is just the Fourier

transform of the autocorrelation
function: o

S(f) =4kTR (up to f~1/RC)

Similar
Fluctuation-dissipation
relations hold for
magnetism, dielectrics,
mechanical systems etc.
Limited new info from noise
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Frequency spectra: S(f)
V(t)=a,cos(2mt e 1Hz)+a,cos(2nte 2Hz)+ etc
S(Hz)=a’ SQHz)=a, elc
Write the signal as a sum of waves at a set of equal spaced frequencies.

S(f) gives how the square of the size of the components depends on f.

White noise: same amount of power in each equal frequency range
20Hz-30 Hz, 30 Hz-40 Hz, etc (like white light, except different
range)

1/f noise: same amount in each OCTAVE:
20 Hz-40 Hz, 40 Hz-80 Hz, etc

Playing the tape back at double speed doesn’t change the sound!
Another fact to 1ntrigue to theorists.
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Non-equilibrium basics
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« Some noise is intrinsically non-
equilibrium, driven. e.g.
— Shot noise (photons, electrons,..)
« S,(f)=2Iq for current, in simple case /
— Barkhausen domain flips in magnets
. - >
— Sliding charge 2 . — H
density waves A
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FIGURE 1 Field dependence of the broadﬁfnd noise <&Ve>

° Some IS JUSt measured at 300 Hz and IE{ERIEUTJ .
sampled by non-equilibrium means. e.qg.
— most 1/f noise in resistors

— Particle density fluctuations ."WM«.MMMMW
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1/f noise basics

1 OR almost always measured out of equilibrium

— but that rarely matters, as confirmed by
» Linearity of 8V in |
* Independence of ac or dc measurements
* Occasional equilibrium measurements via 3(kTR)

Other variables (magnetic u, capacitor V) are
measured in equilibrium.

Spectra are often remarkably close to 1/,
but not usually exactly so

The deviations from 1/f . e

often shift around like SN
simple thermally o
activated kinetics e
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FIG. 1. ia) The basic experimental configurstion and typical
observations of 1/ noise. Schematic dingram of the simplest
measuring apparatus for 17 nodse. R, is 2 large, constant resis-
tor. The unlabeled resistor is  ithe sample. Various
modifications, such as the use of & currents with plase-
sensitive detection, hridge cireuiis, and multiprobe samples, are
comman. (bl An actual Auciuating voltage from a silicon resis-
tor with showt 100 uA of current (1 V average hias), measired
in & setup like that shown in part a), () Mose spectea Trom
twe thick-illm resistors, shown over o very broad range of fre-
quencies. The wpper plot is taken from an IrOs-based film an
T 556 K, the lower from a nathenate-based flm at T =300 K.
Ench point in each spectrum represents thg average square aff
the Fourier transforms of 1300 1024 potnt (R0es, swch as that in
part (bl. Several such spectra, taken at different sampling rates,
are stitched together for each Brosd-band specirum shown
ifrom Pellegrini. Saletti, Terring, and Prudemeiat, 1983,



So what's rattling?

In silicon with an oxide layer electrons

jump in and out of traps in the oxide. _ empty
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In copper, defects 1n the crystal structure move around.
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In chromium, domains of a type of magnetism
change their alignment back and forth.
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And all give the same shape of spectrum: 1/1. 10




1/f noise: the simplest ingredients

aR/R

electron traps in
amorphous SiO,

collection of simple parallel
noise sources

equilibrium
thermodynamics and
Kinetics

random trap depths
random trap positions

I
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random barrier heights FIG. 5. Two-state switching in the voltage on small gated Si
) ) resistors, observed by Ralls et al. (1984). Vj; is the gate voltage,
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Could 1/f noise just come from
summing the switchers?

|t sure looks that way
— E.g In silicon-on-sapphire resistors (1983):
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Fici. 4. Power spectra af noom temperature for seven daf-
ferent samples havimg aspproximaoiely the same size and
penmeiry.
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Quantum noise

At low temperatures, you still get 1/f noise, but the rattles don’t
occur by getting enough thermal energy to go over the barrier.

Things tunnel through, guantum mechanically.
(electrons in and out of traps in Nb,Og, Rogers and Buhrman,

1985) - Ted
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Fl{i. 2. Typical data set for g showing the abruepi change
rom thermally aclivated behavior above (o nonacltivated

behavior below T — 15 K.
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The secret of 1/f noise

* Ingredient (e.g. two-state)

S(/)= I(f) (i exd /) )- M)

_EA
12
fc - fAe /kT fA ~10"Hz f. depends exponentially on a distributed
kTol(E dIn 1 energy, tunr_1e|ing distance, etc.
p( A) i e (f) _

_ e. Ch bl
P(fc) fc df f o VBaer:ﬁan?sm, 1939; McWhorter, 1951
kTp(len(Jy D
S(f)= !
{

1/f with log corrections
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Where does the 1/f ‘secret’ that apply?
Quasi-equilibrium systems
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«  (Almost?) all 1/f noise in metals 2%t 2 gna ]
( ) s+ | a BA9 Mﬂ:‘ Halmﬁ
. ] -.i- I
— 2Defect motions (~all metals) \ ,;m; Jone
— 12Domain motions (SDW, FM,. — 'E e —
F g T, 230K
— 2Glassy TLS Lttt
— 128pinglassy collective modes.... “aponm
* “1/f noise in semiconductors i ety or Catsampls irrdiated whth el ons nd shoe
. . . wenily nnmealed: dashed [§ W ¥, irradiated sam
(eSpeC|a”y trapS N S|02 ) :I:r.q, l'zr which the rc-.c.im:n;».‘-li;?uﬁ L:TIJW i..ua:ndruuurlul't
2 .. dose, &; dotied line, the recovery of both variables at increasin
« “disordered phase transitions anncaling temperatures T,. For T,=239 K (ot shown)
. dpee 16 ndd e amd dergy = 73 1077, Clearly the defects main
—_ Mangar"tes _____ ly responsible for the resistance change and those mainly re
bke for tha s " _

« 1Dielectric 1/f noise

— Relaxor ferroelectrics Strongly driven systems

e.g. depinned CDWs or vortex
lattices, usually show big
deviations from 1/f1.0

tdirect equilibrium fluctuation-dissipation: S,(f)~kTe"/Cf, S (f)~kTVy /f

2 indirect §V=I8R, | is non-equilibrium probe of equilibrium noise .



Manganites: inhomogeneity and thermodynamics

Thermodynamics not clear from LCMO-0.3 doping

macro-measurements of R(H,T) and M(H,T) _ -
— Disorder messes things up ;

— Noise shows what's up:
little pieces of 1st-order transition

Well defined
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between states
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Flis. 4. Temperzivre and Geld combingiions that produced a
matio re=1 for the switcher b5 ol Table L The open circles wers

akien sweeping eld fom negative [ posikve and the crosses wepz
mken sweeping from posilive 10 negalive. Linesr fils give slopes
whose absolwie value agres e aboul 1% between the Dwo sweep
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[ermomagnetsc domains ane larper than e coercive fliedd (roughly
A G5).



AC Response (nA)
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to ferroelectric
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AC Response (nA)
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Xinyang's Barkhausen
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Big domains form before
most of sample goes FE.
Rates not limited by
nucleation.

Some domains melt
after main melting->
Important heterogeneity.
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Xinyang's data:
notice anything?
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Summary

* Noise provides a good probe of
— Conduction mechanisms (shot noise)
— Domain dynamics (Barkhausen)
— Defect dynamics (1/f noise in metals)
— Subtle phase transitions (CR films,...)
— Hidden order (spinglasses)
— Charge density wave dynamics (TaS,)
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